ITEM 5 (a thru c)

Yerba Buena Island Transition Span 2
Contract Change Orders (CCO)

a) CCO 44-S1: Additional Permanent Erosion Control
b) CCO 52-S1 and 75-S1: Bike Path Railing Fabrication & Installation Costs
c) CCO 76-S1: Bike Path Cantilever at Bent W2
Contracts Update
504/ 288 - Span 6
Contracts Update
504/ 288 - Pier 4
Contracts Update
504/ 288 - Pier 5
Contracts Update
Anticipated lowering Span 6 - May 27th
Contracts Update
YBI TS 2 - New EB Onramp
Contracts Update
YBITS 2 Edge Beam
TBPOC Briefing
Yerba Buena Island Phase II
CCO 44-S1 Additional Erosion Control (Goat Slope)

TOLL BRIDGE PROGRAM
OVERSIGHT COMMITTEE

CALTRANS BAY AREA TOLL AUTHORITY CALIFORNIA TRANSPORTATION COMMISSION

TBPOC – 5a
May 12, 2016
CCO 44-S1 Additional Erosion Control (Goat Slope)
CCO 44-S1 Additional Erosion Control (Goat Slope)

United States Coast Guard Base
Embarkment Confinement System (ECS)
CCO 44-S1 Additional Erosion Control (Goat Slope)
CCO 44-S1 Additional Erosion Control (Goat Slope)
Questions
TBPOC Briefing
Yerba Buena Island Phase II
CCO 52-S1 & 75-S1 Bike Path
Railing Modifications
CCO 52-S1 & 75-S1 Bike Path Railing Modifications
CCO 52-S1 & 75-S1 Bike Path Railing Modifications
CCO 52-S1 & 75-S1 Bike Path Railing Modifications
CCO 52-S1 & 75-S1 Bike Path Railing Modifications

Questions
TBPOC Briefing
Yerba Buena Island Phase II
CCO 76-S1 Bike Path Cantilever at Bent W2

TOLL BRIDGE PROGRAM OVERSIGHT COMMITTEE

TBPOC – 5c
May 12, 2016
CCO 76-S1 Bike Path Cantilever at Bent W2
CCO 76-S1 Bike Path Cantilever at Bent W2
CCO 76-S1 Bike Path Cantilever at Bent W2
Questions
ITEM 5d

YBI Modifications - Bridgeheads
Architectural Issues Update

Bridgeheads

- Necessary architectural element
- Logical transition
- Visual tie/connection
Historic Treatment of Bridge Structure – West Span
Architectural Issues Update

Bikepath view - Without Bridgeheads
Bikepath view - With Bridgeheads
• Tie to the Island
• Sense of arrival
• Tunnel geometry
PROPOSED ALTERNATIVE for Southgate/Hillcrest/EB Ramp Area

Description:
The Project includes realignment of Southgate Road behind Quarters 8, reconstruction of the EB I-80 off-ramp, and a Bike/Ped path between Caltrans’ SFOBB Bike/Ped landing and Macalla Road. Southgate Road will drop down to 20 feet below existing elevation to cross under the EB I-80 off-ramp. The EB off-ramp will include an undercrossing to accommodate Southgate Road. A parking lot will be constructed that serves the Bike/Ped path and Quarters 8. All roadway improvements will be at, or lower, than existing elevations.
Cost:
C.O.S. Cost: $50k – Redesign to fit proposed alternative for Southgate/Hillcrest/EB Ramp Area
Capital Cost: $6.0M - $7.5M
May 9, 2016

Dear Members of the Toll Bridge Program Oversight Committee (TBPOC),

I am writing this short note today to voice my strong support for the continued efforts of Clive Endress in achieving the architectural goals of the New East Span. I want to emphasize the importance of connections in all bridge design; and specifically as it relates to the new bridge, the connection of very disparate forms at the Island. The bridgeheads, as currently designed, are absolutely necessary as a transitional element between the modern winged form of the new bridge, and the Art Deco forms of the viaduct and the tunnel entry. The present condition between the ending of the new bridge’s viaduct and the existing Art Deco viaduct and tunnel entry looks as if someone did not articulate the disjunction of these two very different structural vocabularies.

Further as Clive notes, they tie the bridge to the island, and create an enhanced gateway to San Francisco.

I urge you to approve the continued effort in implementing these very important architectural features into the final design of the New East Span.

Sincerely,

Donald MacDonald

Donald MacDonald, FAIA
macdonald architects
1516 folsom street
sf, ca 94103 usa
415.626.9100 (t)
415.626.9296 (f)
ITEM 6

SAS Tower Anchor Rod Testing/Grout Repair Results
San Francisco-Oakland Bay Bridge
SAS T1 Tower Anchor Rod – Grout Update
May 12, 2016
Tower Footing

• 424 Anchor rods
 • Approximately 26 feet long
 • 388 - 76 mm Diameter
 • 36 - 100 mm Diameter

• 150 Steel Dowels
 • 150 mm Diameter
Tower Footing

- Within tower footing
- Anchor rods extend 18 feet below tower base plate
Caulking Removal
Grout Conditions: Post Water Jetting

<table>
<thead>
<tr>
<th>Number of Occurrences</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>273</td>
<td>136</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>424</td>
</tr>
</tbody>
</table>

Diagrams

- **Fully Grouted**: No Scale
- **Partially Grouted**: No Scale
- **GROUT CAP**: No Scale
- **Fully Ungrounded**: No Scale
- **Intermittent Voids**: No Scale
TBPOC Direction from June 4, 2015: Complete
Analysis
Gap at Base Plate Time History for 6 Sets - No Rods

Gap at Base Plate Time History for All 6 Sets

- Set 1
- Set 2
- Set 3
- Set 4
- Set 5
- Set 6
Analysis results of model with no rods show no measureable impact on overall structure response and negligible effect on tower base plates.

Maximum base plate gap of model with no rods is 15mm; the model with rods shows no uplift of the base plate.

Both “With rods” and “No rods” analyses runs show the tower base is essentially elastic.

The largest impact from the poor grouting is the temporary loss of environmental protection for both the rods and the steel pile cap. It is important to complete the grouting of all rods to provide the missing protection against corrosion.
Mock-Up Testing
Decision Tree for T1 Anchor Rods

1. Retain Existing Rods*
 2. Salvage grout and Supplement
 3. Replace Rods

4. Remove Grout
 5. Replace with non-grout material
 - Oil or synthetic Grease
 - Composite
 6. Re-grout

* Consider Adjusting Preload
Full Seismic Proof Test at the Tower Base
Seismic Proof Load = 460 kips

- Exceeded Seismic Load Three Times (Max 463 kips)
- Bond Between Pipe Sleeve and Concrete Strong Enough to Hold Load
 - The Sleeve Did Not Slip
Seismic Proof Load = 460 kips
Rod A and Rod C (with Collars)

- Exceeded Seismic Load Three Times
 (Max Loads: 469 and 468 kips, respectively)
- Rod and Stop-Collar-Grout System Strong Enough to Hold Load
Seismic Proof Load = 460 kips
Rods B, D, and E (w/ o Collars)

- Full Load Capacity was Reached Between Anchor Rod and Grout
- Rod and Grout Bond Contributes Significantly to Displacement Resistance

<table>
<thead>
<tr>
<th>Rod B</th>
<th>Load Cycle</th>
<th>Maximum Load Achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>452 kips</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>393 kips</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>377 kips</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>368 kips</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rod D</th>
<th>Load Cycle</th>
<th>Maximum Load Achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>466 kips</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>447 kips</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>383 kips</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>369 kips</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>353 kips</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rod E</th>
<th>Load Cycle</th>
<th>Maximum Load Achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>387 kips</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>375 kips</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>254 kips</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>240 kips</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>222 kips</td>
</tr>
</tbody>
</table>
SUMMARY MATERIAL EVALUATION FOR CORROSION PROTECTION AND BONDING OF ANCHOR RODS

<table>
<thead>
<tr>
<th>Strategy/Treatment</th>
<th>Provide Adequate Anchoring Capacity</th>
<th>Provide Active/Passive Corrosion Protection</th>
<th>Reduce/Stop Water Infiltration</th>
<th>Placement/Installation Feasibility in Field</th>
<th>Use in Similar Repair Applications/Projects</th>
<th>Future Repair/Removal Feasibility</th>
<th>Does Not Require Continuous Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Repair</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Cementitious Grouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-shrink Cementitious Grout</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>High Early Strength Concrete (Highly Expansive Grout)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ultra High Performance Concrete (UHPC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-cementitious Grouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Grout</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Epoxy Grout</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrocarbon/Silicon/Polymer/Resin/Cement Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corolugic VpiC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cement Grease</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bentonite Clay Slurry</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Vector Post-Tech PTI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Synthetic (Polymer) Slurry</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Composite Material (Epoxy Resin)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Chloride Z Complex, ZG</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Admixtures/Additives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Conditioner (Oxygen Scavengers)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulated Concrete Pore Solution</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Interface Inhibitors</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Calcium Nitrite</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Admixed Corrosion Inhibitor</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cathodic Protection</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pressurized Air</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(✓) Strategy/treatment assessed positively in criterion
(-) Strategy/treatment assessed negatively in criterion
(N/A) Criterion does not apply to strategy/treatment
Corrosion Evaluation & Prevention for Anchor Rods

Backfill Investigation

Objective:
• Provide long-term corrosion protection to anchorage system
• Provide alternate load path

22 mitigation strategies evaluated for:
• Anchoring capacity
• Active/passive corrosion protection
• Reduce/stop water infiltration
• Placement/installation feasibility
• Similar repair applications
• Future repair/removal feasibility
• Maintenance requirements

Selected strategy
1. Completely remove existing grout and denso tape
2. Backfill with non-shrink cementitious grout
Micro-Indications
The presence of micro-cracks in threaded A354BD Tower Anchor rods *DID NOT* affect the environmentally induced hydrogen stress-cracking threshold @ OCPZn, KIp-cc/EHE, using the ASTM RSL™ Step Load Testing Protocol under environmental conditions.

This finding is true whether the Severity Metric for the presence of micro-cracks was high or low.

The measured values of the threshold for Rod 150T and Rod 136T agreed with the measured values from threaded specimens for Tower Anchorage Rods determined in Test V.
C3 / C4 & C6 / C7: Verify presence of Micro-Indications and RSL (Raymond Test): Small Specimen Stress Corrosion Test for Rod 2 (136-2-3) & Rod 1 (150-1-2)

Who: DJV/METS/+ Observers

Why: Determine effect of micro-indications on Hydrogen Embrittlement threshold
Thread Measurements
Laboratory Thread Measurements of Nuts

<table>
<thead>
<tr>
<th>Rods</th>
<th>Pitch Diameter</th>
<th>Minor Diameter</th>
<th>Pitch Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>142-1-1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>155-1-1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>155-1-2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>155-1-3</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>162-2-12</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Laboratory Thread Measurements of Rods

<table>
<thead>
<tr>
<th>Rods</th>
<th>Pitch Diameter</th>
<th>Major Diameter</th>
<th>Pitch Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rod 1 (150-1-2)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top Threads</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
</tr>
<tr>
<td>Bottom Threads</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rod 2 (136-2-3)**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top Threads</td>
<td>N/A</td>
<td>N/A</td>
<td>X</td>
</tr>
<tr>
<td>Bottom Threads</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rod 3 (155-1-1)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top Threads</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bottom Threads</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rod 4 (162-2-12)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top Threads</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bottom Threads</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

* indicates successful measurements, ** indicates measurements that are not applicable.
Full Seismic Proof Test at the Tower Base
Summaries and Conclusions

Summaries

Analysis
1) Post-EQ safety and performance of the bridge is met with or without the anchor rods.

Mock-up Testing
1) The bond between the pipe-sleeve and the in-situ T1 pile cap concrete can carry the peak design seismic load.
2) The anchor rod-collar-grout system, even without the bottom nut-plate system, can carry the peak seismic design load.
3) The anchor rod-grout bond alone can contribute significantly to the displacement resistance, but cannot carry the entire peak seismic design load by itself.

Micro-Indications Testing
1) The presence of the micro indications/cracks do not have an effect on the anchor rod’s “stress corrosion cracking” threshold or bridge performance.

Thread Measurements
1) Samples of the four anchor rods that were removed from the foundation for laboratory review were found to have undersized threads per contract requirements (ASTM/ANSI standards).
2) All of the 5 nuts investigated for thread requirements met contract requirements (ASTM/ANSI standards).

Full Seismic proof Testing on 407 In-Place Tower Anchor Rods
1) 406 of 407 tower anchor rods were successfully tested to full seismic proof load.

Conclusions
1) The tower to foundation connection will provide the project required post-EQ performance and meets the project design criteria.
2) Grout all anchor rods to maintain the original design intent, stop the flow of fresh oxygen, enhance the long-term durability and minimize required maintenance.
Teamwork

DESIGN — CONSTRUCTION

METS — BATA

FHWA — PIO

CTC — BAMC

BAMC — TBPOC Bolt Group
REQUEST

1) Support to complete the construction grouting operation of the SAS T1 Tower Anchor Rods

 Schedule:
 approximately 1 year once CCO signed and NTP transmitted

 Costs:
 CO: 12M$
 COS: 3M$

2) Support to develop a final report

 Schedule:
 By June 30, 2016

 Costs:
 $125,000
ITEM 9
Program Budget FY 15/16 Update,
Program Budget FY 16/17 Request,
Risk Management Update
Regular Monthly Meeting
May 12, 2016

Item 9
Capital Outlay Support (COS)
FY 15-16 Budget Update
FY 16-17 Budget Request
Program Budget Update
Outline

• East Span Construction Schedule

• East Span Capital Outlay (CO) and Capital Outlay Support (COS) Cash Flow

• East Span Budget and Forecast

• FY 15/16 Budget Update

• FY 16/17 Budget Estimate

• Recommendation
TBPOC May 12th, 2016 – Item 9

Toll Bridge Seismic Retrofit Program
CO and COS Cash Flow for East Span Projects
Expenditure thru March 2016

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>East Bay Replacement</td>
<td></td>
</tr>
<tr>
<td>D120F, SA5-Superstructure</td>
<td></td>
</tr>
<tr>
<td>D120M, OTD Eastbound</td>
<td></td>
</tr>
<tr>
<td>D120T, YB702-Cent. dismant.</td>
<td></td>
</tr>
<tr>
<td>D130S, YB703 Landscaping</td>
<td></td>
</tr>
<tr>
<td>D1362, Superstructure Dam</td>
<td></td>
</tr>
<tr>
<td>D1363, Marine Founth Dim -</td>
<td></td>
</tr>
<tr>
<td>D1364, Per 3 Removal Demo.</td>
<td></td>
</tr>
<tr>
<td>D1367, Per E4-E16.</td>
<td></td>
</tr>
<tr>
<td>D1368, Per E2, E19-E22</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1) CO and COS forecasts are based on 1st QTR 2016 Financial and Real Management Reports.
2) Forecasts include 1st QTR 2016 PK of 4486M CO, and 5100.0M COS.
3) FY 15/16 COS expenditures include A&E expenditures from FY 14/15.
TBPOC May 12th Meeting – Item 9

East Span COS Budget, Forecast and Expenditure

(in Millions)

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current TBPOC Approved Budget (April 2014)</td>
<td>$1,305.5</td>
</tr>
<tr>
<td>Current Forecast (Q1 2016)</td>
<td>$1,400.2</td>
</tr>
<tr>
<td>Budget Shortfall</td>
<td>$94.7</td>
</tr>
<tr>
<td>Expenditure thru March 2016</td>
<td>$1,293.9</td>
</tr>
<tr>
<td>Estimated unpaid A&E invoices thru March 2016</td>
<td>$4.0</td>
</tr>
<tr>
<td>Remaining Budget as of April 2016</td>
<td>$7.6</td>
</tr>
<tr>
<td>Estimated FY15/16 Exp. From April 2016 thru June 2016</td>
<td>$5.0</td>
</tr>
<tr>
<td>Remaining East Span COS Budget as of July 1st, 2016</td>
<td>$2.6</td>
</tr>
</tbody>
</table>
TBPOC May 12th Meeting – Item 9

FY 15/16 COS Budget and Forecast

(in Millions)

<table>
<thead>
<tr>
<th>Description</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original TBPOC Approved Budget (July 2015)</td>
<td>$22.00</td>
</tr>
<tr>
<td>Supplemental - Anchor Rods Investigations (October 2015)</td>
<td>$0.28</td>
</tr>
<tr>
<td>Supplemental – Environmental (October 2015)</td>
<td>$24.94</td>
</tr>
<tr>
<td>FY 15/16 COS Exp. through March 2016</td>
<td>$20.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBPOC Approval Budget</td>
<td>$24.94</td>
</tr>
<tr>
<td>Fo recast</td>
<td>-$0.06</td>
</tr>
<tr>
<td>Variance</td>
<td></td>
</tr>
</tbody>
</table>

The forecast variance for FY 15/16 COS is calculated as follows:

- Original TBPOC Approved Budget: $22.00
- Supplemental - Anchor Rods Investigations: $0.28
- Supplemental – Environmental: $24.94
- FY 15/16 COS Exp. through March 2016: $20.09

Total: $22.00 + $0.28 + $24.94 + $20.09 = $77.21

TBPOC Approval Budget: $24.94
Fo recast: -$0.06
Variance: $77.21 - $24.94 = $0.06

The forecast variance is therefore $0.06.
FY 15/16 COS Budget and Forecast

(in Millions)

<table>
<thead>
<tr>
<th></th>
<th>State staff</th>
<th>A & E</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original TBPOC Approved Budget (July 2015)</td>
<td>10.2</td>
<td>11.80</td>
<td>22.00</td>
</tr>
<tr>
<td>Supplemental - Anchor Rods Investigations (October 2015)</td>
<td>0</td>
<td></td>
<td>2.66</td>
</tr>
<tr>
<td>Current TBPOC Approved Budget</td>
<td></td>
<td></td>
<td>24.94</td>
</tr>
<tr>
<td>TBPOC Approval Budget</td>
<td></td>
<td></td>
<td>20.09</td>
</tr>
<tr>
<td>Recast</td>
<td>12.10</td>
<td>12.90</td>
<td>25.00</td>
</tr>
<tr>
<td>Overrun / Underrun</td>
<td>1.65</td>
<td>1.58</td>
<td>0.06</td>
</tr>
</tbody>
</table>

TBPOC May 12th Meeting – Item 9
TBPOC May 12th Meeting – Item 9

FY 15/16 COS Expenditure and Projection by Month

FY 15/16

FY 16/17

Exp

Projection

Jul-15 $2,651 Aug-15 $2,529 Sep-15 $2,400 Oct-15 $2,437 Nov-15 $2,092 Dec-15 $1,951 Jan-16 $1,815 Feb-16 $1,866 Mar-16 $1,700 Apr-16 $1,600 May-16 $1,600 Jun-16 $2,000 Jul-16 $2,400 Aug-16 $2,340

in thousands

$3,000

$2,500

$2,000

$1,500

$1,000

$500

$500

FY 15/16

FY 16/17

In thousands
FY 16/17 COS Budget Estimate

Bottom-up Estimate Workplan with Top-down Evaluation

- Outline workload for each contract in FY 16/17
- Identify major activities/tasks and their respective schedule
- Estimate resource needs based on scope and activities
- Meet functional teams and consultants to review estimates
- Match needs with State or A&E resources
- Group work where possible for efficiency
- Focus on known workload and identify risks
- Evaluate top-down COS/CO ratios, history, progress
TBPOC May 12th Meeting – Item 9

TBSRP COS Funding by FY

<table>
<thead>
<tr>
<th></th>
<th>FFY 12/13</th>
<th>FFY 13/14</th>
<th>FFY 14/15</th>
<th>FFY 15/16 Forecast</th>
<th>FFY 16/17 Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>A&E</td>
<td>$55,510</td>
<td>$40,575</td>
<td>$21,891</td>
<td>$13,000</td>
<td>$15,850</td>
</tr>
<tr>
<td>STATE</td>
<td>$40,272</td>
<td>$34,682</td>
<td>$19,267</td>
<td>$12,000</td>
<td>$12,900</td>
</tr>
<tr>
<td>Total</td>
<td>$95,781</td>
<td>$75,257</td>
<td>$41,158</td>
<td>$25,000</td>
<td>$28,750</td>
</tr>
</tbody>
</table>

| Capital Cost | $238,800 | $261,500 | $97,200 | $81,600 | $160,000 |

| COS/CO Ratio | 40% | 29% | 42% | 30% | 22% |
FY 16/17 COS Budget Estimate

<table>
<thead>
<tr>
<th>Projects</th>
<th>FY 15/16 Cost (K)</th>
<th>FY 16/17 Cost (K)</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carry-over Work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YBITS 2</td>
<td>$9,340</td>
<td>$7,638</td>
<td>$(1,702)</td>
</tr>
<tr>
<td>504/288 Demo, Ramp</td>
<td>$2,540</td>
<td>$4,802</td>
<td>$2,262</td>
</tr>
<tr>
<td>E3 Demo</td>
<td>$2,460</td>
<td>$142</td>
<td>$(2,318)</td>
</tr>
<tr>
<td>Parent Marine Demo</td>
<td>$2,270</td>
<td></td>
<td>$(2,270)</td>
</tr>
<tr>
<td>OTD 2</td>
<td>$400</td>
<td>$442</td>
<td>$42</td>
</tr>
<tr>
<td>W. Approach/Dumbarton Br Access Road</td>
<td>$820</td>
<td>$794</td>
<td>$(26)</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$17,830</td>
<td>$13,817</td>
<td>$(4,013)</td>
</tr>
<tr>
<td>New Work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E4-E18</td>
<td>$300</td>
<td>$7,665</td>
<td>$7,365</td>
</tr>
<tr>
<td>E2, E19-E22</td>
<td>$80</td>
<td>$799</td>
<td>$719</td>
</tr>
<tr>
<td>SAS Archive (includes Skyway) & Closeout</td>
<td>$1,600</td>
<td>$3,870</td>
<td>$2,270</td>
</tr>
<tr>
<td>SAS Rods</td>
<td>$5,200</td>
<td>$2,600</td>
<td>$(2,600)</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$7,180</td>
<td>$14,934</td>
<td>$7,754</td>
</tr>
<tr>
<td>FY Total</td>
<td>$25,010</td>
<td>$28,751</td>
<td>$3,741</td>
</tr>
</tbody>
</table>
Risk Management Review FY 16-17

- Anchor Rod Investigation & Grout Repair
 $0-$2 million
- East Span As-Builts & Archiving (METS & QA/QC)
 $1-$3.5 million
- SAS Claims/Arbitration Costs (Legal)
 $0-$2 million
- YBITS2 Construction Delays
 $1-$3 million
- E4-E18 Marine Foundation Permitting
 $0-$2 million
- Bridgehead Design & Placement
 $0-$0.5 million
- Staff Salary Overhead Rates
 $0-$1 million
- Group Expert Review & Peer Review
 $0-$1 million
- TBPOC/PMT Requests (i.e. Cathodic Protection)
FY 16-17 COS Budget

Recommendation

Approve FY 16/17 budget and adjust East Span East Span budget accordingly

• $28.7 million COS to support $160M CO in FY 16/17
• $95 million estimate-to-completion ($3 million remaining in budget by July 2016)
Questions
ITEM 11
TBPOC Operating Procedures Under Open Meeting Law
April 26, 2016

Malcolm Dougherty
Chairperson
Toll Bridge Program Oversight Committee
1111 Broadway, Suite 900
Oakland, California 94607

RE: OC-16-TBPOC-055
Consent to Employ Counsel Other Than the Attorney General

Dear Chairperson Dougherty:

This letter is in response to the Toll Bridge Program Oversight Committee’s request for this office to provide legal services.

Unfortunately, we are unable to provide the requested representation primarily because such legal services pose a potential conflict of interest for this office. We regularly advise two of the Committee’s members, the Department of Transportation and the California Transportation Commission. It is our hope and expectation that in most instances, our current clients’ interests would match the Committee’s interests as it performs its mission. Nonetheless, differences in interests may be inevitable and could generate conflicts given the Committee’s role overseeing Caltrans construction contracts and similar matters. Even if actual conflicts do not materialize, simultaneous representation would create at least an appearance of conflict if the Attorney General were to take on the legal services the Committee has requested.

For the reasons stated above, we must decline representation of the Committee, and grant consent under Government Code section 11040 for the Committee to employ counsel other than the Attorney General.
We assume that the Committee will obtain any other state approvals or clearances that may be necessary to retain outside counsel in this matter. By providing this consent, we do not undertake to endorse your choice of counsel, nor do we agree to monitor that counsel’s work or bills.

Sincerely,

KATHLEEN A. KENEALY
Chief Assistant Attorney General

For KAMALA D. HARRIS
Attorney General

cc: Douglas Woods, Senior Assistant Attorney General, Government Law Section
 Stepan A. Haytayan, Supervising Deputy Attorney General, Government Law Section
May 11, 2016

Kathleen Kenealy, Chief Assistant Attorney
Civil Law Division
Attorney General’s Office
California Department of Justice
P.O. Box 944255
Sacramento, CA 94244-2550

Re: Request for Legal Advice

Dear Ms. Kenealy,

On behalf of the California Transportation Commission (CTC) Chair, I am writing to request legal advice on the below questions. These questions are not posed on behalf of the Toll Bridge Public Oversight Committee (TBPOC) but are posed by the CTC since the CTC’s Executive Director serves as an ex-officio member of the TBPOC. Any issues that might arise as a result of the involvement of the CTC’s Executive Director with the TBPOC could affect the relationship between the CTC and its Executive Director.

1. Under what circumstances, if any, may the TBPOC meet in closed session for the purpose of discussing settlement of disputed claims arising from contracts between the Department of Transportation (Caltrans) and contractors working on the Toll Bridge Seismic Retrofit Program?

2. If the law allows the TBPOC to meet in closed session for the purpose of discussing settlement of disputed claims arising from contracts between Caltrans and contractors working on the Toll Bridge Seismic Retrofit Program, may anyone other than the TBPOC’s legal...
counsel and members of the TBPOC’s Program Management Team (see §30952.1(a)) \(^1\) be present?

As background, the TBPOC was established pursuant to the enactment of AB 144 in 2005 in connection with the Toll Bridge Seismic Retrofit Program. (§30952.1(a)). The program includes the construction of the new east span of the Bay Bridge between Oakland and Yerba Buena Island. The construction work is performed by contractors overseen by and in privity of contracts with Caltrans. The law specifies the TBPOC’s responsibilities. These responsibilities include “reviewing and approving significant change orders and claims.” (§30952.05(c).) Claims generally arise as a result of disputes between Caltrans and its contractors. In the event a claim is disapproved by the TBPOC, the result may be litigation against Caltrans.

Although the TBPOC was not originally subject to the Bagley-Keene Act, legislation that took effect at the beginning of this year requires the TBPOC to comply with that Act. At the TBPOC’s last meeting, a presentation was made in support of the TBPOC hiring its own legal counsel. In the course of that presentation, it was suggested that a reason for doing so is that the TBPOC could move into closed session to discuss certain disputed claims that have arisen between Caltrans and one or more contractors performing work on the new span of the Bay Bridge.

If I can provide additional information to assist you in answering these questions, please let me know.

Sincerely,

[Signature]

Susan Bransen
Executive Director

c: Commissioners, California Transportation Commission
 Steve Heminger, Executive Director, Metropolitan Transportation Commission
 Malcolm Dougherty, Director, California Department of Transportation

\(^1\) All references are to the Streets and Highways Code.